# 9 Derivatives, Part IIa (Differentiation)

# 9.1 Basic proofs

We now prove theorems that make differentiation of a large class of functions easy.

**Theorem 1.** If f(x) = c then f'(a) = 0 for all a.

*Intuitively* derivatives measure the rate of change. A constant function doesn't change, thus the derivative is zero.

**Proof:** we already proved this in the previous chapter.

**Theorem 2.** If f(x) = x then f'(a) = 1 for all a.

Intuitively f(x) grows at exactly the same rate as x, thus the derivative is 1.

**Proof:** 

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{a+h-a}{h} = 1$$

**Theorem 3.** If f, g are differentiable at a, then (f + g)'(a) = f'(a) + g'(a).

Examples:

- You have two functions, each modeling growth of some bank account. You want to understand the rate of growth of both accounts.
- You have two different assembly lines producing the same product.  $c_1(x)$  and  $c_2(x)$  model the cost of producing x units on each assembly line. You want to understand total cost changes as production across both assembly lines increases.

#### **Proof:**

$$(f+g)'(a) = \lim_{h \to 0} \frac{(f+g)(a+h) - (f+g)(a)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{f(a+h) + g(a+h) - f(a) - g(a)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} + \lim_{h \to 0} \frac{g(a+h) - g(a)}{h}$$
  
= 
$$f'(a) + g'(a)$$

**Theorem 3a.** If  $f_1, \ldots, f_n$  are differentiable at a, then:

$$f_1 + \ldots + f_n)'(a) = f'_1(a) + \ldots + f'_n(a)$$

**Proof.** This is a fairly straightforward proof by induction. Skipping it here as I've already spent enough time on this chapter.

**Theorem 4.** If f, g are differentiable at a, then

$$(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$$

Examples:

• Let  $r_1(t), r_2(t)$  model the length of each side of a rectangle over time. You want to understand the change in area at time t.

#### **Proof:**

$$\begin{split} (f \cdot g)'(a) &= = \lim_{h \to 0} \frac{(f \cdot g)(a+h) - (f \cdot g)(a)}{h} \\ &= \lim_{h \to 0} \frac{f(a+h)g(a+h) - f(a)g(a)}{h} \\ &= \lim_{h \to 0} \frac{f(a+h)g(a+h) - f(a)g(a) + f(a+h)g(a) - f(a+h)g(a)}{h} \\ &= \lim_{h \to 0} \frac{f(a+h)(g(a+h) - g(a)) + g(a)(f(a+h) - f(a))}{h} \\ &= \lim_{h \to 0} \left( f(a+h)\frac{g(a+h) - g(a)}{h} + g(a)\frac{f(a+h) - f(a)}{h} \right) \\ &= \lim_{h \to 0} f(a+h) \cdot \lim_{h \to 0} \frac{g(a+h) - g(a)}{h} + \lim_{h \to 0} g(a) \cdot \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \\ &= \lim_{h \to 0} f(a+h) \cdot g'(a) + g(a) \cdot f'(a) \end{split}$$

Recall from 7.2 that if f is differentiable at a, then  $\lim_{h\to 0} f(a+h) = f(a)$ . Thus

$$(f \cdot g)'(a) = f(a) \cdot g'(a) + g(a) \cdot f'(a)$$

**Theorem 4a.** If  $f_1, \ldots, f_n$  are differentiable at a, then:

$$f_1 \cdot \ldots \cdot f_n)'(a) = \sum_{i=1}^n f_1(a) \cdot f_i'(a) \cdot f_n(a)$$

**Proof.** This is a fairly straightforward proof by induction. Skipping it here as I've already spent enough time on this chapter.

**Theorem 5.** If g(x) = cf(x) then  $g'(a) = c \cdot f'(a)$ .

Examples:

• Let h be a height of a rectangle that's constant, and let b(t) model the length of the base of a rectangle over time. You want to understand the change in area at time t.

**Proof:** Let h(x) = c so  $g = h \cdot f$ . Then by theorem 4:

$$g'(x) = h'(x)f(x) + f'(x)g(x)$$
$$= 0 \cdot f(x) + cf'(x)$$
$$= cf'(x)$$

Theorems 1-5 imply:

$$(-f)'(a) = (-1 \cdot f)'(a) = -f'(a)$$

and

$$(f-g)'(a) = (f+(-g))'(a) = f'(a) + (-g)'(a) = f'(a) - g'(a)$$

**Theorem 6.** If  $f(x) = x^n$  for  $n \in \mathcal{N}$ , then  $f'(a) = na^{n-1}$  for all a.

Examples:

• Let s(t) model the length of the side of a cube over time. You want to understand the change in volume at time t.

**Proof.** We prove this by induction. For n = 1, f'(a) = 1 by theorem 2.

Assume if  $f(x) = x^n$  then  $f'(a) = na^{n-1}$  for all a.

Let I(x) = x and let  $g(x) = x^{n+1} = xx^n$ . Then  $g(x) = I(x) \cdot f(x)$ , i.e.  $g = I \cdot f$ . By theorem 4:

$$g'(a) = (I \cdot f)'(a)$$
  
=  $I'(a)f(a) + I(a)f'(a)$   
=  $1 \cdot a^n + a \cdot na^{n-1}$   
=  $a^n + na^n$   
=  $a^n(1+n)$   
=  $(n+1)a^n$ 

**Theorem 6b.** If  $f(x) = x^n$  for n < 0, then  $f'(a) = na^{n-1}$  for all a. (In other words, we extend theorem 6 to negative exponents.)

**Proof.** We use theorem 7 below (putting 6b here for learning convenience).

$$f'(a) = \left(\frac{1}{a^{-n}}\right)'$$
$$= \frac{nx^{-n-1}}{x^{-2n}}$$
$$= nx^{n-1}$$

**Theorem 7.** If g is differentiable at a and  $g(a) \neq 0$ , then

$$\left(\frac{1}{g}\right)'(a) = \frac{-g'(a)}{\left[g(a)\right]^2}$$

Examples:

• Let  $i(d) = \frac{1}{d^2}$  model the intensity of light, which is inversely proportional to the square of the distance from the source. You want to know how intensity changes with distance.

**Proof.** We will prove this by using the derivative definition. However, we must first show  $\left(\frac{1}{g}\right)(a+h)$  is defined for sufficiently small h. This is easy.

Since g is differentiable at a it is continuous at a. Thus by nonzero neighborhood lemma (see 4.1) there exists  $\delta > 0$  such that  $|h| < \delta$  implies  $g(a+h) \neq 0$  for all h. Thus  $\left(\frac{1}{g}\right)(a+h)$  is defined for sufficiently small h.

We are now ready to prove the core of the theorem.

$$\lim_{h \to 0} \frac{\left(\frac{1}{g}\right)(a+h) - \left(\frac{1}{g}\right)(a)}{h} = \lim_{h \to 0} \left(\frac{1}{g(a+h)} - \frac{1}{g(a)}\right)/h$$
$$= \lim_{h \to 0} \left(\frac{g(a) - g(a+h)}{g(a) \cdot g(a+h)}\right)/h$$
$$= \lim_{h \to 0} \frac{g(a) - g(a+h)}{h \cdot g(a) \cdot g(a+h)}$$
$$= \lim_{h \to 0} \frac{-[g(a+h) - g(a)]}{h} \cdot \frac{1}{g(a) \cdot g(a+h)}$$
$$= \lim_{h \to 0} \frac{-[g(a+h) - g(a)]}{h} \cdot \lim_{h \to 0} \frac{1}{g(a) \cdot g(a+h)}$$

Recall from 7.2 that if f is differentiable at a, then  $\lim_{h\to 0} f(a+h) = f(a)$ . Thus:

$$\lim_{h \to 0} \frac{-[g(a+h) - g(a)]}{h} \cdot \lim_{h \to 0} \frac{1}{g(a) \cdot g(a+h)} = -g'(a) \cdot \frac{1}{[g(a)]^2}$$

as desired.

**Theorem 8.** If f, g are differentiable at a and  $g(a) \neq 0$ , then

$$\left(\frac{f}{g}\right)'(a) = \frac{g(a) \cdot f'(a) - f(a) \cdot g'(a)}{[g(a)]^2}$$

Examples:

• Let e(t), s(t) model the number of engineers and sales people at a company over time. You want to understand the change in the ratio between the two.

Proof.

$$\begin{pmatrix} \frac{f}{g} \end{pmatrix}'(a) = \left(f \cdot \frac{1}{g}\right)'(a)$$

$$= f(a) \cdot \left(\frac{1}{g}\right)'(a) + f'(a) \cdot \left(\frac{1}{g}\right)(a)$$

$$= \frac{-g'(a) \cdot f(a)}{[g(a)]^2} + \frac{f'(a)}{g(a)}$$

$$= \frac{-g'(a) \cdot f(a) \cdot g(a) + f'(a) \cdot [g(a)]^2}{[g(a)]^3}$$

$$= \frac{f'(a) \cdot g(a) - g'(a) \cdot f(a)}{[g(a)]^2}$$

# 9.2 Chain rule

The derivative of composed functions is considerably more complicated, and so deserves its own section. We'll prove this in two stages. First, we'll attempt a proof with a few false starts that will point us in the direction of a real proof. Once the direction becomes clear, we'll abandon our first draft and write a clean proof from scratch.

**Theorem 9 (the chain rule).** If g is differentiable at a, and f is differentiable at g(a), then

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$$

Examples:

• Let a(t) model altitude of a rocket over time, and let p(a) model air pressure at a particular altitude. You want to know how air pressure changes over time.

#### Proof, first draft.

As usual, we start with the definition of the derivative:

$$(f \circ g)'(a) = \lim_{h \to 0} \frac{(f \circ g)(a+h) - (f \circ g)(a)}{h}$$
  
=  $\lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{h}$   
=  $\lim_{h \to 0} \left( \frac{f(g(a+h)) - f(g(a))}{g(a+h) - g(a)} \cdot \frac{g(a+h) - g(a)}{h} \right)$   
=  $\lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{g(a+h) - g(a)} \cdot \lim_{h \to 0} \frac{g(a+h) - g(a)}{h}$   
=  $\left(\lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{g(a+h) - g(a)} \right) \cdot g'(a)$ 

This is a bit of a false start as we now have two problems:

- To get f'(g(a)) in the first term, we need  $\lim_{h\to 0} \frac{f(g(a)+h)-f(g(a))}{h}$ , but instead we have  $\lim_{h\to 0} \frac{f(g(a+h))-f(g(a))}{g(a+h)-g(a)}$ .
- g(a+h) g(a) may be zero for  $h \neq 0$ , so the division may be illegal.

However it isn't a total waste. Our false start gives us an idea for how we may proceed– we'll replace  $\frac{f(g(a+h))-f(g(a))}{g(a+h)-g(a)}$  with something better. What could be the replacement? Let's hypothesize existance of a function  $\phi(h)$  with the following property (we will soon prove such a function exists):

$$\frac{f(g(a+h)) - f(g(a))}{h} = \phi(h) \cdot \frac{g(a+h) - g(a)}{h}$$

We can then rewrite our initial equations as follows:

$$(f \circ g)'(a) = \lim_{h \to 0} \frac{(f \circ g)(a+h) - (f \circ g)(a)}{h}$$
$$= \lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{h}$$
$$= \lim_{h \to 0} \left(\phi(h) \cdot \frac{g(a+h) - g(a)}{h}\right)$$
$$= \lim_{h \to 0} \phi(h) \cdot \lim_{h \to 0} \frac{g(a+h) - g(a)}{h}$$
$$= \lim_{h \to 0} \phi(h) \cdot g'(a)$$

To get to  $(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$  we need  $\phi(h)$  to possess one more property:

$$\lim_{h \to 0} \phi(h) = f'(g(a))$$

Given this additional property, we can now finish our reasoning:

$$(f \circ g)'(a) = \lim_{h \to 0} \phi(h) \cdot g'(a) = f'(g(a)) \cdot g'(a)$$

Thus proving the chain rule reduces to proving there exists a function  $\phi(h)$  with the two properties above. For cleanliness, let's start a new proof from scratch and demonstrate the existance of such a function.

#### Proof.

Suppose there exists a function  $\phi(h)$  with the following properties:

$$\frac{f(g(a+h)) - f(g(a))}{h} = \phi(h) \cdot \frac{g(a+h) - g(a)}{h}$$
(1)

$$\lim_{h \to 0} \phi(h) = f'(g(a)) \tag{2}$$

Then

$$(f \circ g)'(a) = \lim_{h \to 0} \frac{(f \circ g)(a+h) - (f \circ g)(a)}{h}$$
$$= \lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{h}$$
$$= \lim_{h \to 0} \left(\phi(h) \cdot \frac{g(a+h) - g(a)}{h}\right) \qquad \text{by property 1}$$
$$= \lim_{h \to 0} \phi(h) \cdot \lim_{h \to 0} \frac{g(a+h) - g(a)}{h}$$
$$= \lim_{h \to 0} f'(g(a)) \cdot g'(a) \qquad \text{by property 2}$$

To complete the proof we must construct such a function and prove our construction has properties 1 and 2. We will do so now. Define  $\phi$  as follows:

$$\phi(h) = \begin{cases} \frac{f(g(a+h)) - f(g(a))}{g(a+h) - g(a)} & \text{if } g(a+h) - g(a) \neq 0\\ f'(g(a)) & \text{if } g(a+h) - g(a) = 0 \end{cases}$$

We will prove properties 1 and 2 hold for  $\phi$ .

**Property 1 proof.** We now show  $\frac{f(g(a+h))-f(g(a))}{h} = \phi(h) \cdot \frac{g(a+h)-g(a)}{h}$ . There are two cases: either  $g(a+h) - g(a) \neq 0$  or g(a+h) - g(a) = 0. Suppose  $g(a+h) - g(a) \neq 0$ . Then

$$\phi(h) \cdot \frac{g(a+h) - g(a)}{h} = \frac{f(g(a+h)) - f(g(a))}{g(a+h) - g(a)} \cdot \frac{g(a+h) - g(a)}{h}$$
$$= \frac{f(g(a+h)) - f(g(a))}{h}$$

Alternatively, suppose g(a+h) - g(a) = 0. Then

$$\phi(h) \cdot \frac{g(a+h) - g(a)}{h} = f'(g(a)) \cdot \frac{g(a+h) - g(a)}{h}$$
$$= f'(g(a)) \cdot \frac{0}{h}$$
$$= 0$$

But g(a+h) - g(a) = 0 means g(a+h) = g(a), and thus  $\frac{f(g(a+h)) - f(g(a))}{h} = 0$ . Thus in both cases property 1 holds, as desired.

#### Property 2 proof.

We now show  $\lim_{h\to 0} \phi(h) = f'(g(a))$ . Put differently:

- Intuitively, we're trying to show that when h is small, the top piece of  $\phi$  piecewise definition approaches the bottom piece (which we chose to be f'(g(a))).
- Here is another way to frame it. Observe that  $\phi(0) = f'(g(a))$ . Thus showing  $\lim_{h\to 0} \phi(h) = f'(g(a))$  is equivalent to showing  $\lim_{h\to 0} \phi(h) = \phi(0)$ , i.e. that  $\phi$  is continuous at 0.
- Formally, we must show that given  $\epsilon > 0$  there exists  $\delta > 0$  such that  $|h| < \delta$  implies  $|\phi(h) f'(g(a))| < \epsilon$ .

So, let  $\epsilon > 0$  be given.

Firstly, since f is differentiable at g(a), by definition of the derivative we have:

$$f'(g(a)) = \lim_{k \to 0} \frac{f(g(a) + k) - f(g(a))}{k}$$

Inlining the limit defition, for all  $\epsilon>0$  there exists  $\delta'>0$  such that  $0<|k|<\delta'$  implies

$$\left|\frac{f(g(a)+k)-f(g(a))}{k}-f'(g(a))\right|<\epsilon$$

Secondly, since g is differentiable at a, it continuous at a. Thus:

$$\lim_{h \to 0} g(a+h) = g(a)$$

Or put differently, there exists  $\delta > 0$  such that  $|h| < \delta$  implies:

$$|g(a+h) - g(a)| < \delta$$

Finally, we now have everything we need to prove property 2. Consider any h with  $|h| < \delta$ .

• If g(a+h) - g(a) = 0 then  $\phi(h) = f'(g(a))$  so  $|\phi(h) - f'(g(a))| < \epsilon$ .

• If  $g(a+h) - g(a) \neq 0$  we can fix k = g(a+h) - g(a) as both aren't 0 and are less than  $\delta'$ . Thus we get:

$$\begin{aligned} \epsilon &> \left| \frac{f(g(a) + k) - f(g(a))}{g(a+h) - g(a)} - f'(g(a)) \right| \\ &= \left| \frac{f(g(a) + g(a+h) - g(a)) - f(g(a))}{g(a+h) - g(a)} - f'(g(a)) \right| \\ &= \left| \frac{f(g(a+h)) - f(g(a))}{g(a+h) - g(a)} - f'(g(a)) \right| \\ &= \left| \phi(h) - f'(g(a)) \right| \end{aligned}$$

I.e.  $|\phi(h) - f'(g(a))| < \epsilon$  as desired.

**Theorem 9a.** Let  $f_i$  be differentiable at  $f_{i+1}(\ldots f_n(x) \ldots)$ . Then:

$$(f_1 \circ \ldots \circ f_n)'(x) = \prod_{i=1}^n f'_i (f_{i+1}(\ldots f_n(x) \ldots))$$

**Proof.** This is a fairly straightforward proof by induction. Skipping it here as I've already spent enough time on this chapter.

### 9.3 Derivatives of polynomials

We can easily find derivatives of polynomials using theorems 1-6. It turns out to be an interesting enough form that it's worth mentioning explicitly. Consider

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$$

Then:

$$f'(x) = na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \ldots + 2a_2 x + a_1$$

Continuing:

$$f''(x) = n(n-1)a_n x^{n-2} + (n-1)(n-2)a_{n-1}x^{n-3} + \ldots + 2a_2$$

Repeatedly continuing this process we get:

$$f^{(n)}(x) = n!a_n$$

And of course for m > n it's easy to see  $f^{(m)} = 0$ .

#### 9.4 Differentiation practice

Spivak spends a lot of the chapter covering concrete differentiation examples. I work through these here. First, a summary of the nine differentiation theorems proved above:

1. If f(x) = c then f'(a) = 0. 2. If f(x) = x then f'(a) = 1. 3. (f + g)'(a) = f'(a) + g'(a). 4.  $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$ . 5. If g(x) = cf(x) then  $g'(a) = c \cdot f'(a)$ . 6. If  $f(x) = x^n$  for  $n \in \mathcal{N}$ , then  $f'(a) = na^{n-1}$ . 7.  $\left(\frac{1}{g}\right)'(a) = \frac{-g'(a)}{[g(a)]^2}$ . 8.  $\left(\frac{f}{g}\right)'(a) = \frac{g(a) \cdot f'(a) - f(a) \cdot g'(a)}{[g(a)]^2}$ . 9.  $(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$ .

You also need to know two trig derivatives presented below without proof (proper proofs will show up in a later chapter when sin and cos are formally defined):

$$\sin'(a) = \cos a$$
$$\cos'(a) = -\sin a$$

We are now ready to practice example problems.

$$f(x) = \frac{x^2 - 1}{x^2 + 1} \implies f'(x) = \frac{(x^2 + 1)2x - (x^2 - 1)2x}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}$$

$$f(x) = \frac{x}{x^2 + 1} \implies f'(x) = \frac{1 - x^2}{(x^2 + 1)^2}$$

$$f(x) = \frac{1}{x} = x^{-1} \implies f'(x) = -\frac{1}{x^2} = (-1)x^{-2}$$

$$f(x) = x \sin x \implies f'(x) = \sin x + x \cos x$$

$$\implies f''(x) = 2 \cos x - x \sin x$$

$$g(x) = \sin^2 x = \sin x \sin x \implies g'(x) = 2 \sin x \cos x$$

$$\implies g''(x) = 2 \cos^2 x - 2 \sin^2 x$$

$$h(x) = \cos^2 x = \cos x \cos x \implies h'(x) = -2 \sin x \cos x$$

$$\implies h''(x) = 2 \sin^2 x - 2 \cos^2 x$$

Note g'(x) + h'(x) = 0. This is something we could have guessed-  $(g+h)(x) = \sin^2 x + \cos^2 x = 1$ , thus by theorem 1, (g+h)'(x) = 0.

$$f(x) = x^3 \sin x \cos x$$
  
$$\implies f'(x) = 3x^2 \sin x \cos x + x^3 \cos^2 x - x^3 \sin^2 x$$

The next set of examples uses the chain rule (where sometimes the product rule could be used instead). For example,  $\sin^2 x$  could be interpreted either as  $\sin x \sin x$ , or as  $s(\sin x)$  where  $s(x) = x^2$ .

$$\begin{split} f(x) &= \sin x^2 \implies f'(x) = \cos x^2 \cdot 2x \\ f(x) &= \sin^2 x \implies f'(x) = 2 \sin x \cdot \cos x \\ f(x) &= \sin x^3 \implies f'(x) = \cos x^3 \cdot 3x^2 \\ f(x) &= \sin^3 x \implies f'(x) = 3 \sin^2 x \cdot \cos x \\ f(x) &= \sin \frac{1}{x} \implies f'(x) = \cos \frac{1}{x} \cdot \frac{-1}{x^2} \\ f(x) &= \sin(\sin x) \implies f'(x) = \cos(\sin x) \cdot \cos x \\ f(x) &= \sin(x^3 + 3x^2) \implies f'(x) = \cos(x^3 + 3x^2) \cdot (3x^2 + 6x) \\ f(x) &= (x^3 + 3x^2)^{53} \implies f'(x) = 53(x^3 + 3x^2)^{52} \cdot (3x^2 + 6x) \end{split}$$

We now consider a composition of three functions:

$$f(x) = \sin^2 x^2 = s \circ (\sin \circ s) \implies f'(x) = 2 \sin x^2 \cdot \cos x^2 \cdot 2x$$
$$f(x) = \sin(\sin x^2) = \sin \circ (\sin \circ s) \implies f'(x) = \cos(\sin x^2) \cdot \cos x^2 \cdot 2x$$

And finally a composition of four functions:

$$\begin{aligned} f(x) &= \sin^2(\sin^2 x) = s \circ (\sin \circ (s \circ \sin)) \\ \implies f'(x) &= 2\sin(\sin^2 x) \cdot \cos(\sin^2 x) \cdot 2\sin x \cdot \cos x \\ f(x) &= \sin((\sin x^2)^2) = \sin \circ s \circ \sin \circ s \\ \implies f'(x) &= \cos((\sin x^2)^2) \cdot 2\sin x^2 \cdot \cos x^2 \cdot 2x \\ f(x) &= \sin^2(\sin(\sin x)) = s \circ \sin \circ \sin \circ \sin \\ \implies f'(x) &= 2\sin(\sin(\sin x)) \cdot \cos(\sin(\sin x)) \cdot \cos(\sin x) \cdot \cos x \end{aligned}$$

# 9.5 Sine polynomials

I don't think "sine polynomials" is a real name, but I needed a clever name for this section. Here we explore derivatives of functions of the form  $x^k \sin \frac{1}{x}$ .

Claim 1: Let

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

Then f is not differentiable at 0.

**Proof.** Using derivative definition:

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h \sin \frac{1}{h} - 0}{h} = \lim_{h \to 0} \sin \frac{1}{h}$$

We saw in 8.3 that  $\lim_{h\to 0} \sin \frac{1}{h}$  does not exist. Thus f is not differentiable at zero.

Claim 2: Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

Then f is differentiable at 0.

**Proof.** Using derivative definition:

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h} - 0}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0$$

Thus f'(0) = 0.

Claim 3: Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

Then f' is not differentiable at 0.

**Proof.** Observe that:

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

Observe that  $\lim_{x\to 0} \cos \frac{1}{x}$  does not exist (for the same reason  $\lim_{x\to 0} \sin \frac{1}{x}$  does not exist). Thus  $\lim_{x\to 0} f'(x)$  does not exist. And thus f' is not continuous, let alone differentiable at 0.