
7 Derivatives, Part I (Fundamentals)

7.1 Formal definitions

Definition: the derivative at a of a function f , denoted f ′(a), is defined as:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

There are three intuitions to convey about the derivative:

• Algebraic interpretation. The derivative tells how f(a + h), the value of
f as small distance from a, changes relative to f(a) as h becomes very
small.

• Geometric interpretation. Draw a line through points (a, f(a)) and (a +
h, f(a+ h)) for some small h. Then make h “infinitely small”. Our f ′(a)
is the slope of that line. The tagent line is a linear approximation of f
near a.

• Physics interpretation. Suppose f(t) maps time to position of a car on a
road (or of any object on a straight line). Suppose you want to know the
average velocity between any two points in time t1, t2. If h = t2 − t1 then

the average velocity is f(t1+h)−f(t1)
h . This is the quotient of the deriva-

tive! Only with h “reduced to an infinitesimal”, producing instantanious
velocity.

Definition: f is called differentiable at a if the limit f ′(a) exists.

The notation f ′(a) suggests f ′ is a function. Indeed, we define f ′ as follows.
Its domain is the set of all numbers a where f is differentiable, and its value at
such a point a is the limit above. Not surprisingly, we call f ′ the derivative of
f . Note that the domain of f ′ could be much smaller than the domain of f .

We can apply the definition of the derivative to f ′ yielding the second derivative
(f ′)′, denoted f ′′ or f (2). The domain of f ′′ is all points a such that f ′ is
differentiable at a. If f ′′(a) exists, we say f is twice differentiable at a.

7.2 Differentiability implies continuity

We are about to prove an important theorem– that differentiability implies
continuity. To do that, we begin with a convenient (simple) lemma.

Lemma: limx→a f(x) is equivalent to limh→0 f(a+ h).
Proof. Let x = a+ h. Then

lim
h→0

f(a+ h)

⇐⇒ lim
x−a→0

f(x)

⇐⇒ lim
x→a

f(x)
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Note that the last implication is true because

0 < |(x− a)− 0| < δ ⇐⇒ 0 < |x− a| < δ

QED.

Theorem: if f is differentiable at a, then f is continuous at a.
Proof. We must show that:

lim
x→a

f(x) = f(a)

We begin as follows:

lim
h→0

[f(a+ h)− f(a)] = lim
h→0

f(a+ h)− f(a)

h
· h

= lim
h→0

f(a+ h)− f(a)

h
· lim
h→0

h

= lim
h→0

f(a+ h)− f(a)

h
· 0

= 0

It follows that

lim
h→0

[f(a+ h)− f(a)] = 0

=⇒ lim
h→0

f(a+ h)− lim
h→0

f(a) = 0

=⇒ lim
h→0

f(a+ h) = lim
h→0

f(a) = f(a)

7.3 Low-level proofs

In the next chapter we prove theorems that make finding derivatives for many
classes of functions easy. But for now we show four low-level derivations di-
rectly from the definition. Here we will be looking at constant functions, linear
functions, quadratic, and cubic functions.

Constant functions

Let f(x) = c. Then:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

c− c

h
= 0

Thus f is differentiable at a for every number a, and f ′(a) = 0.
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Linear functions

Let f(x) = cx+ d. Then:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

c(a+ h) + d− (ca+ d)

h

= lim
h→0

ch

h
= c

Thus f is differentiable at a for every number a, and f ′(a) = c.

Quadratic functions

Let f(x) = x2. Then:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

(a+ h)2 − a2

h

= lim
h→0

a2 + 2ah+ h2 − a2

h

= lim
h→0

2ah+ h2

h

= lim
h→0

2a+ h

= lim
h→0

2a

Thus f is differentiable at a for every number a, and f ′(a) = 2a.

Cubic functions

Let f(x) = x3. Then:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

(a+ h)3 − a3

h

= lim
h→0

a3 + 3a2h+ 3ah2 + h3 − a3

h

= lim
h→0

3a2h+ 3ah2 + h3

h

= lim
h→0

3a2 + 3ah+ h2

= 3a2

Thus f is differentiable at a for every number a, and f ′(a) = 3a2.
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7.4 Non-differentiability

Continuous functions are “nice”. Functions that are differentiable everywhere
are “nicer”. Functions that are differentiable everywhere and whose first deriva-
tive is differentiable everywhere are nicer still. Thus to fully understand the
derivative we must understand examples where it does not exist.

We now turn our attention to functions that aren’t differentiable at some points
a. We first look at four simple examples where there isn’t everywhere a first
derivative. We then turn our attention to a more subtle example– a function
that’s differentiable in the first, but not everywhere in the second derivative.

First derivative

Example 1
Let f(x) = |x|. Consider f ′(0):

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

|h|
h

Observe that limh→0+
|h|
h = 1 and limh→0−

|h|
h = −1. This limh→0

|h|
h does not

exist, and f is not differentiable at 0. Note that f is differentiable at every other
point: f ′(a) = −1 for a < 0 and f ′(a) = −1 for a > 0.

Example 2
Let f be defined as follows:

f(x) =

{
x2, x ≤ 0

x, x ≥ 0

Now consider f ′(0):

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

f(h)

h

Observe that
f(h)

h
=

{
h2

h = h, h ≤ 0
h
h = 1, h ≥ 0

Therefore limh→0−
f(h)
h = 0 and limh→0+

f(h)
h = 1. Thus limh→0

f(h)
h does not

exist, and f is not differentiable at 0.

Example 3
Let f(x) =

√
|x|. Consider f ′(0):

f ′(0) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

√
|h|
h
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Observe that √
|h|
h

=

{√
−h
h = − 1√

−h
, h < 0

√
h
h = 1√

h
, h > 0

Therefore limh→0+

√
|h|
h = ∞ and limh→0−

√
|h|
h = −∞. Thus limh→0

√
|h|
h does

not exist, and f is not differentiable at 0.

Example 4

Let f(x) = 3
√
x. Here

3√
h

h plays out as follows:

3
√
h

h
=

h1/3

h
=

1

h2/3
=

1

( 3
√
h)

2

This expression becomes arbitrarily large as h goes to 0, i.e. limh→0
1

(
3√
h)

2 = ∞.

Thus f is not differentiable at zero (or put differently, the tagent line to f at 0
is vertical).

Second derivative

We now come to our more subtle example– a function that’s differentiable in
the first but not everywhere in the second derivative:

Example 1
Let

f(x) =

{
x2, x ≥ 0

−x2, x ≤ 0

As we’ve seen in the quadratic functions example above, dx2

dx = 2x. By very

similar logic, d(−x2)
dx = −2x. Thus f ′(a) = 2a if a ≥ 0, and f ′(a) = −2a if

a ≤ 0. Or, put differently, f ′(x) = 2|x|.

So, f ′(0) = 0. But what about f ′′(0)? We’ve already seen that g(x) = |x| is
not differentiable, and by very similar logical, f ′′(0) does not exist! So even a
“smooth looking” function may not have a second derivative– a fact that implies
existence of a second derivative is a strong critereon for a function to satisfy.

7.5 Tangent lines

Spivak now handles a question—- how many times does a tagent line to f at
a intersect the graph of f? He doesn’t yet motivate the question, though I
suspect he will at a later time (at which point I will come back and make a note
of it here). To answer this question we must first find the linear equation that
describes the tagent line, which we will now do. We’ll then address the question
of intersection for quadratic and cubic functions.
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Point-slope form

The slope m of a line is determined by

m =
y − y1
x− x1

For a function f differentiable at a, the slope of a tagent line at a is m = f ′(a).
We also know one of the points on the line– (a, f(a)) (the point where the
tangent line intersects with f). Plugging that in we get

f ′(a) =
y − f(a)

x− a

=⇒ y − f(a) = f ′(a)(x− a)

=⇒ y = f ′(a)(x− a) + f(a)

This gives us a linear equation for the tangent line– a linear approximation of
f near a.

Intersections

Quadratic functions. For f(x) = x2 we’ve seen that f ′(a) = 2a. Plugging
that into y = f ′(a)(x− a) + f(a) we get:

y = 2a(x− a) + a2

= 2ax− a2

Let g(x) = 2ax− a2. We can now solve for all x such that f(x) = g(x):

f(x) = g(x)

=⇒ x2 = 2ax− a2

=⇒ x2 − 2ax+ a2 = 0

=⇒ (x− a)2 = 0

=⇒ x = a

So the only solution is x = a, therefore the only point of intersection is (a, f(a) =
g(a) = a2).

Cubic functions. For f(x) = x3 we’ve seen that f ′(a) = 3a2. Plugging that
into y = f ′(a)(x− a) + f(a) we get:

y = 3a2(x− a) + a3

= 3a2x− 2a3

Let g(x) = 3a2x− 2a3. We can now solve for all x such that f(x) = g(x):

f(x) = g(x)

x3 = 3a2x− 2a3

x3 − 3a2x+ 2a3 = 0
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Factoring this in Mathematica, we get

(a− x)2(2a+ x) = 0

Thus one of the solutions is x = a (we already knew (a, a3) is a point of
intersection– we explicitly constructed the tangent line at this point). The other
solution is x = −2a, and thus the other point of intersection is (−2a,−8a3).

38


	Derivatives, Part I (Fundamentals)
	Formal definitions
	Differentiability implies continuity
	Low-level proofs
	Non-differentiability
	Tangent lines


