6 Continuity, Part II (On an Interval)

6.1 Intermediate Value Theorem

Theorem: if f is continuous on [a, b] and $f(a) < 0 < f(b)$, then there exists $x \in [a, b]$ such that $f(x) = 0$.

Or intuitively, if $f(a)$ is below zero and $f(b)$ is above zero, f must cross the x-axis somewhere.

Proof: intuitively, we will locate the smallest number x on the x -axis where $f(x)$ first crosses from negative to positive, and show that $f(x)$ must be zero.

First, we define a set A that contains all inputs to f before f crosses from negative to positive for the first time:

 $A = \{x : a \leq x \leq b, \text{and } f \text{ is negative on the interval } [a, x]\}\$

We know $A \neq \emptyset$ since $a \in A$, and b is an upper bound of A. Thus A has a least upper bound α such that $a \leq \alpha \leq b$. By nonzero neighborhood lemma (see [4.1\)](#page-0-0) we know there is some interval around α on which f is negative, and some interval around b on which f is positive. Thus we can further refine the bound on α to $a < \alpha < b$.

We now show $f(\alpha) = 0$ by eliminating the possibilities $f(\alpha) < 0$ and $f(\alpha) > 0$.

Case 1. Suppose for contradiction $f(\alpha) < 0$. By nonzero neighborhood lemma there exists $\delta > 0$ such $|x - \alpha| < \delta$ implies $f(x) < 0$ for all x. But that means numbers in $(\alpha - \delta, \alpha + \delta)$ are in A. E.g. $(\alpha + \delta/2) \in A$. Since $\alpha + \delta/2 > \alpha$, α is not an upper bound of A, and is thus not the least upper bound.

Case 2. Suppose for contradiction $f(\alpha) > 0$. By nonzero neighborhood lemma there exists $\delta > 0$ such $|x - \alpha| < \delta$ implies $f(x) > 0$ for all x. But that means numbers in $(\alpha - \delta, \alpha + \delta)$ are *not* in A, and there exist many upper bounds of A less than α . E.g. $\alpha - \delta/2$ is an upper bound of A, and since $\alpha - \delta/2 < \alpha$, α is not the least upper bound.

Both cases lead to contradiction, therefore $f(\alpha) = 0$. QED.

IVT generalization

The intermediate value theorem is usually presented in a more general way. If f is continuous on [a, b] and $f(a) < c < f(b)$ or $f(a) > c > f(b)$ then there is some x in [a, b] such that $f(x) = c$.

Intuitively, f takes on any value between $f(a)$ and $f(b)$ at some point in the interval $[a, b]$.

Proof. This trivially follows from the the theorem as initially stated. There are two cases:

Case 1: $f(a) < c < f(b)$. Let $g = f - c$. Then g is continuous and $g(a) <$ $0 < g(b)$. Thus there is some x in [a, b] such that $g(x) = 0$. But that means $f(x) = c$.

Case 2: $f(a) > c > f(b)$. Observe that $-f$ is continuous on [a, b] and $-f(a) <$ $-c < -f(b)$. By case 1 there is some x in [a, b] such that $-f(x) = -c$, which means $f(x) = c$.

QED.

6.2 Boundedness theorem

The boundedness theorem states that if f is continuous on $[a, b]$, then f is bounded above (i.e. f lies below some line). Before we prove this, we first prove a simple lemma.

Bounded neighborhood lemma: if f is continuous at a, then there is $\delta > 0$ such that f is bounded above on the interval $(a - \delta, a + \delta)$.

Intuitively, if f is continuous at a then there is some interval around a on which f is bounded above.

Proof: The proof is trivial. Inlining the definition of continuity, for any $\epsilon > 0$ there exists $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) - f(a)| < \epsilon$ for all x. Thus $f(a) + \epsilon$ is the upper bound on f within $(a - \delta, a + \delta)$, as desired.

(Note that we can pick any ϵ to concretize the proof, for example $\epsilon = 1$.)

Boundedness theorem: if f is continuous on $[a, b]$, then f is bounded above on [a, b]. I.e. there is some numbers N such that $f(x) \leq N$ for all x in [a, b].

Proof: intuitively, we will try to find the smallest number x on the x-axis where $f(x)$ becomes unbounded above, and discover that there is no such number in $[a, b]$.

First, we define a set A that contains all inputs to f before f stops being bounded above:

 $A = \{x : a \leq x \leq b, \text{ and } f \text{ is bounded above on } [a, x]\}\$

By bounded neighborhood lemma f is bounded above in the neighborhood of a^9 a^9 . Thus we know $A \neq \emptyset$ because $a \in A$. Further, b is an upper bound of A. Thus A has a least upper bound.

⁹We are being sloppy here as we actually need a left-sided and right-sided version of the bounded neighborhood lemma. I am papering over this for now, but will need to fix at some point by giving proper one sided proofs

Let $\alpha = \sup A$. To prove the boundedness theorem we must prove two claims:

- 1. $\alpha = b$, i.e. f does not ever stop being bounded above before b.
- 2. $(\alpha = b) \in A$, as sup A is not necessarily a member of A.

First, we prove $\alpha = b$. Suppose for contradiction $\alpha < b$. By bounded neighborhood lemma there is some $\delta > 0$ such that f is bounded above in $(\alpha - \delta, \alpha + \delta)$. But that means there are many upper bounds greater than α , for example $\alpha + \delta/2$. Thus α is not the *least* upper bound. We have a contradiction, and so $\alpha = b$.

Second, we prove $(\alpha = b) \in A$. By bounded neighborhood lemma there is some $\delta > 0$ such that f is bounded above in $(b - \delta, b]$. Pick any x_0 such that $b - \delta < x_0 < b$. Then:

- $x_0 < b = \alpha$. Since α is the least upper bound it follows $x_0 \in A$. Thus f is bounded above on $[a, x_0]$.
- f is bounded above on $[x_0, b]$.

Since f is bounded above on $[a, x_0]$ and on $[x_0, b]$, it follows f is bounded above on $[a, b]$ as desired. QED.

Boundedness theorem generalization

The boundedness theorem is usually presented slightly more generally: it proves f is bounded above and below. We already proved the former. Put more formally, the latter states:

If f is continuous on [a, b], then f is bounded below on [a, b]. I.e. there is some numbers N such that $f(x) \geq N$ for all x in [a, b].

Proof: observe that $-f$ is continuous on [a, b]. By claim 2 there exists a number M such that $-f(x) \leq M$ for all x in [a, b]. But that means $f(x) \geq -M$ for all x in [a, b]. QED.

6.3 Extreme Value Theorem

The extreme value theorem states that is f is continuous on [a, b], then f attains its maximum on $[a, b]$. To see why we need the extreme value theorem, consider $f = \frac{1}{x}$. f is discontinuous at 0 and approaches infinity. Thus f does not attain a maximum value on the interval [0, 1].

Extreme value theorem: If f is continuous on $[a, b]$, then there is some number y in [a, b] such that $f(y) \ge f(x)$ for all x in [a, b].

Proof: Let A be the set of f's outputs on $[a, b]$:

 $A = \{f(x) : x \text{ in } [a, b]\}$

Since [a, b] isn't empty, $A \neq \emptyset$. By boundedness theorem, f is bounded on [a, b], and so A has an upper bound. Thus A has a least upper bound. Let $\alpha = \sup A$. By definition $\alpha \geq f(x)$ for x in [a, b]. Thus it suffices to show $\alpha \in A$ (i.e. $\alpha = f(y)$ for some y in $[a, b]$.

Let's consider a function g^{10} g^{10} g^{10} :

$$
g = \frac{1}{\alpha - f(x)}, \quad x \text{ in } [a, b]
$$

Suppose for contradiction $\alpha \notin A$. Then the denominator is never zero and g is continuous. Therefore:

$$
\frac{1}{\alpha - f(x)} < M \qquad \text{by boundedness theorem}
$$
\n
$$
\implies \alpha - f(x) > \frac{1}{M} \qquad \text{take reciprocal}
$$
\n
$$
\implies -f(x) > \frac{1}{M} - \alpha
$$
\n
$$
\implies f(x) < \alpha - \frac{1}{M} \qquad \text{times } -1
$$

But this contradicts that α is the *least* upper bound. Thus $\alpha \in A$ as desired. QED.

EVT generalization

The extreme value theorem is usually presented slightly more generally: a continuous f attains both its maximum and its minimum. We already proved the former. Put more formally, the latter states:

If f is continuous on [a, b], then there is some number y in [a, b] such that $f(y) \leq f(x)$ for all x in [a, b].

Proof: Observe that $-f$ is continuous on [a, b]. By claim 3 there is some y in [a, b] such that $-f(y) \geq -f(x)$ for all x in [a, b]. But that means that $f(y) \leq f(x)$ for all x in [a, b]. QED.

6.4 IVT and EVT consequences

Claim 1a: Every positive number has a square root. I.e. if $\alpha > 0$, then there is some number x such that $x^2 = \alpha$.

Proof: Consider the function $f(x) = x^2$. If f takes on the value of α as its output, then $x = \sqrt{\alpha}$ is the input (i.e. $x^2 = \alpha$). Thus all we must show is that f takes on the value of α .

 $\frac{10}{q}$ is a bit of a rabbit pulled out of a magic hat, but to quote a great British statesman, them's the breaks

We can do it as follows. Show there exist a, b such that $f(a) < \alpha < f(b)$. Since f is continuous, by intermediate value theorem there exists x such that $f(x) = \alpha$. So, let's find a and b:

- First, find a such that $f(a) < \alpha$. Observe that $f(0) = 0 < \alpha$, thus fix $a=0.$
- Second, find b such that $\alpha < f(b)$.
	- If $\alpha < 1$ then $f(1) = 1 > \alpha$. Thus fix $b = 1$.
	- $-$ If $\alpha > 1$ then $f(\alpha) = \alpha^2 > \alpha$. Thus fix $b = \alpha$.

By intermediate value theorem, there is some x in [0, b] such that $f(x) = \alpha$. QED.

Claim 1b: Every positive number has an *n*th root. I.e. if $\alpha > 0$, then there is some number x such that $x^n = \alpha$.

Proof: We can use the exact same argument as 1a, just consider $f(x) = x^n$.

Claim 1c: Let n be odd. Then every number has an n th root. I.e. there is some number x such that $x^n = \alpha$ for all α .

Proof: This is also easy:

- Case $\alpha > 0$. By claim 2b, there is an x such that $x^n = \alpha$.
- Case $\alpha < 0$. By claim 2b, there is an x such that $x^n = -\alpha$. Then $(-x)^n = \alpha.$

QED.

Claim 2: If n is odd, then any equation of the form

$$
x^n + a_{n-1}x^{n-1} + \ldots + a_0 = 0
$$

has a root.

Proof: Let $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$. Here is an intuitive outline of the proof:

- 1. We will show that f must take on negative and positive values. Thus by the intermediate value theorem, there exists some x such that $f(x) = 0$.
- 2. To do that we will show that as |x| gets large, x^n completely dominates other terms. (This is obvious if you consider Big-Oh of each term.)
- 3. Since *n* is odd, x^n takes on a negative value when x is negative, and a positive value when x is positive. And since x^n dominates other terms, when x is sufficiently large, f takes on both negative and positive values.

We must find a way to bound the magnitude of $a_{n-1}x^{n-1} + \ldots + a_0$ to show that for large enough x , it's smaller than the magnitude of x^n . This way we guarantee $f(x)$ has the same sign as x^n . This is trivial to do by adopting Big-Oh notation, but both math books I looked at do it the old-fashioned way, so we will too.

Let's start with some obvious transformations we can make:

$$
|a_{n-1}x^{n-1} + ... + a_0| \le |a_{n-1}x^{n-1}| + ... + |a_0|
$$
 by triangle inequality
= $|a_{n-1}||x^{n-1}| + ... + |a_0|$ in general $|ab| = |a||b|$

If we only consider behavior of f on large x (i.e. when $|x| > 1$), we can further bound the expression. Observe that when $|x| > 1$ then $x^{n-1} > x^{n-2} > ... >$ $x > 1$. Therefore:

$$
|a_{n-1}x^{n-1} + \ldots + a_0| \le |a_{n-1}||x^{n-1}| + \ldots + |a_0|
$$

\n
$$
\le |a_{n-1}||x^{n-1}| + \ldots + |a_0||x^{n-1}|
$$

\n
$$
= x^{n-1}(|a_{n-1}| + \ldots + |a_0|)
$$

Let $M = |a_{n-1}| + \ldots + |a_0| + 1$, i.e. a bound on the sum of the coefficients, plus a little extra to ensure $M > 1$. Then

$$
|a_{n-1}x^{n-1} + \ldots + a_0| \leq x^{n-1}(|a_{n-1}| + \ldots + |a_0|)
$$

< $M|x^{n-1}|$

Given this bound it follows that for all $|x| > 1$:

$$
x^{n} - M|x^{n-1}| < x^{n} + (a_{n-1}x^{n-1} + \ldots + a_0) < x^{n} + M|x^{n-1}|
$$

or put differently:

$$
|x^n - M|x^{n-1}| < f(x) < x^n + M|x^{n-1}|
$$

We will now find x_1 and x_2 such that $f(x_1) < 0$ and $f(x_2) > 0$. Let $x_1 = -2M$ (note that x_1 satisfies our condition $|x_1| > 1$ since $M > 1$). Then for all $x \leq x_1$:

$$
f(x) < x^n + M|x^{n-1}|
$$
\n
$$
= x^n + Mx^{n-1} \qquad n \text{ is odd, thus } n-1 \text{ is even, thus } x^{n-1} > 0
$$
\n
$$
= x^{n-1}(x+M) \qquad \text{factor out } x^{n-1}
$$
\n
$$
\leq -2^{n-1}M^n \qquad \text{substitute } -2M \text{ and simplify}
$$
\n
$$
< 0
$$

Similarly, let $x_2 = 2M$. Then for all $x \geq x_2$:

$$
f(x) > xn - M|xn-1|
$$

= $xn - Mxn-1$
= $xn-1(x - M)$
 $\ge 2n-1Mn$
> 0

QED.

Claim 3: If *n* is even and $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$, then there is a number y such that $f(y) \leq f(x)$ for all x.

Intuitively, even degree polynomials achieve their minimum on R because when you zoom out enough they are U-shaped (consider the graph $f(x) = x^2$ as a simple example).

Proof: It's easy to intuitively see why the claim makes sense. x^n dominates the rest of the terms when x is very large. Since n is even, $x^n > 0$. Thus on very large $|x|$ the graph shoots up (i.e. it has a U shape).

Here is the outline for our proof:

- 1. Observe that $f(0) = a_0$.
- 2. We will prove f is U-shaped by proving there exist two points:
	- $x_0 < 0$ such that $f(x) > a_0$ on $(-\infty, x_0]$.
	- $x_1 > 0$ such that $f(x) > a_0$ on $[x_1, \infty]$.
- 3. By extreme value theorem f achieves a minimum m on $[x_0, x_1]$. Note $m \le a_0$ (otherwise it wouldn't be a minimum).
- 4. Thus f achieves a minimum m on \mathcal{R} , as we've shown that outside $[x_0, x_1]$, $f(x) > a_0$ (and thus $f(x) > m$) for all x.

All we must do now to complete the proof is find $x_0 < 0 < x_1$. Let $M =$ $|a_{n-1}| + \ldots + |a_0| + 1$, i.e. a bound on the sum of the coefficients, plus a little extra to ensure $M > 1$. In Claim 2 we discovered that for $|x| > 1$

$$
x^{n} - M|x^{n-1}| < f(x) < x^{n} + M|x^{n-1}|
$$

Let $x_1 = -2M$. Note that x_1 satisfies our condition $|x_1| > 1$ since $M > 1$. Then for all $x < x_1$:

> $f(x) > x^n - M|x^{n-1}|$ $= x^n + Mx^{n-1}$ x is negative, and $n - 1$ is odd $= x^{n-1}(x + M)$ $\geq 2^{n-1}M^n$ substitute $-2M$ and simplify

Similarly let $x_2 = 2M$. Then for all $x > x_1$:

 $f(x) > x^n - M|x^{n-1}|$ $= x^n + Mx^{n-1}$ x is positive $= x^{n-1}(x + M)$ $\geq 2^{n-1}M^n$ substitute $2M$ and simplify

Since $M > 1$ we have

$$
2^{n-1}M^n \ge M \ge |a_n + 1| \ge a_n + 1 > a_n
$$

Therefore for all $x < x_1$ and $x > x_2$, $f(x) > a_n$ as desired.

Claim 4: Consider the equation

$$
x^n + a_{n-1}x^{n-1} + \ldots + a_0 = c
$$

and suppose n is even. Then there is a number m such that the equation has a solution for $c \geq m$ and has no solution for $c < m$.

Proof: In claim 3 we saw that even degree polynomials achieve a minimum. Let that be m . There are three cases:

- If $c < m$ there is no solution, as the polynomial doesn't take on values less than m.
- If $c = m$ there is a solution, as the polynomial obviously takes on the value m (by claim 3).
- Suppose $c > m$. Let $y, z \in \mathcal{R}$ such that $f(y) = m$ and $z > y, f(z) > c$.^{[11](#page-7-0)} Then $f(y) = m < c < f(z)$. By intermediate value theorem there is a number k in $[y, z]$ such that $f(k) = c$.

QED.

6.5 Uniform continuity

TODO (skipping until it comes up in Spivak or I hit it in Galvin's notes)

¹¹Technically we have to prove such a z exists, but somehow Spivak rolls right past this.