
3 Limits, Part II (Edge Cases)

3.1 Absence of limits

What does it mean to say L is not a limit of f(x) at a? It flows out of the
definition– there exist some ϵ such that for any δ there exists an x in 0 <
|x− a| < δ such that |f(x)− L| ≥ ϵ.

A stronger version is to say there is no limit of f(x) at a. To do that we must
prove that any L is not a limit of f(x) at a.

Example: Absolute value fraction

Consider f(x) = x
|x| . It’s easy to see that

f(x) =

{
−1 if x < 0

1 if x > 0

We will show there is no limit of f(x) near 0.

Weak version. First, let’s prove a weak version– that limx→0 f(x) ̸= 0. That
is easy. Pick some reasonably small epsilon, say ϵ = 1

10 . We must show that for
any δ there exists an x in 0 < |x− a| < δ such that |f(x)− 0| ≥ 1

10 .

Let’s pick some arbitrary x out of our permitted interval, say x = δ/2. Then

|f(x)− 0| = |f(δ/2)| =
∣∣∣∣ δ/2|δ/2|

∣∣∣∣ = 1 ≥ 1

10

Strong version. Now we prove that limx→0 f(x) ̸= L for any L. Sticking
with ϵ = 1

10 we proceed as follows.

If L < 0 take x = δ/2. Then

|f(x)− L| = |f(δ/2)− L| =
∣∣∣∣ δ/2|δ/2|

− L

∣∣∣∣ = |1− L| > 1

10

Similarly if L ≥ 0 take x = −δ/2. Then

|f(x)− L| = |f(−δ/2)− L| =
∣∣∣∣ −δ/2

| − δ/2|
− L

∣∣∣∣ = | − 1− L| > 1

10

Example: Dirichlet function

The dirichlet function f is defined as follows:

f(x) =

{
1 for rational x,

0 for irrational x.

We prove limx→a f(x) does not exist for any a.
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Proof. Let ϵ = 1
10 . Suppose for contradiction there exists L such that limx→a f(x) =

L. There are two possibilities: either L ≤ 1
2 or L > 1

2 .

First suppose L ≤ 1
2 . Pick any rational x from the interval 0 < |x − a| < δ.

Then |f(x)− L| = |1− L| ≥ 1
2 . Thus |f(x)− L| ≥ 1

10 .

Similarly, suppose L > 1
2 . Pick any irrational x from the interval 0 < |x−a| < δ.

Then |f(x)− L| = |0− L| > 1
2 . Thus |f(x)− L| ≥ 1

10 .

Thus limx→a f(x) does not exist for any a, as desired.

3.2 One-sided limits

We have seen that the following function has no limit approaching 0:

f(x) =

{
−1 x < 0,

1 x > 0

However, f has properties around 0 we may want to be able to formally describe.
First, intuitively f approaches −1 as we approach zero from the left (from
“below”). Not surprisingly, a notation for this exists:

lim
x→0−

f(x) = −1

If we take l = −1, this notation compiles down to the following definition. For
every ϵ > 0 there exists δ > 0 such that 0 < a− x < δ implies |f(x)− l| < ϵ for
all x. This is our usual limit definition, except instead of looking at both sides
of a, the inequality 0 < a− x says x < a (i.e. we look from left of a).

Second, intuitively f approaches 1 as we approach zero from the right (from
“above”). The notation for this is:

lim
x→0+

f(x) = 1

If we take l = 1, the definition is as follows. For every ϵ > 0 there exists
δ > 0 such that 0 < x− a < δ implies |f(x)− l| < ϵ for all x. Again, this is our
usual limit definition, except instead of looking at both sides of a, the inequality
0 < x− a says x > a (i.e. we look from right of a).

3.3 Limits at infinity

Consider the function f(x) = 1
x . Clearly as x gets very large, f(x) trends toward

zero. Again, we have a notation that encodes this property of f :

lim
x→∞

1

x
= 0

Take l = 0, and this compiles down to the following definition. For every ϵ > 0
there is a number N such that |f(x)− l| < ϵ for all x > N .
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Intuitively, for any ϵ, f(x) will get within ϵ of the limit for x large enough. Here
we simply produce a large enough N instead of δ.

3.4 Infinite limits

Consider the function f(x) = 1
x2 . Near zero f shoots up, and again, we want to

be able to encode that. The notation for this property is

lim
x→0

f(x) = ∞

This compiles down to the following definition. Given any M > 0 there exists
δ > 0 such that 0 < |x−a| < δ implies f(x) > M for all x. Intuitively, given an
arbitrarily large f(x) = M we can produce a bound on the x-axis, within which
f(x) is never smaller than M .

Example. Suppose we want to prove limx→0
1
x2 = ∞. Let M > 0 be given. We

must produce δ > 0 such that 0 < |x| < δ implies 1
x2 > M for all x. Suppose

we fix |x| < 1√
M
. Then:

|x| < 1√
M

note M > 0

=⇒ x2 <
1

M

=⇒ 1

x2
> M

Thus δ ≤ 1√
M

implies 1
x2 > M as desired.
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