
2 Limits, Part I (Blessed Path)

2.1 Formal limits definition

Definition: limx→a f(x) = L when for any ϵ ∈ R there exists δ ∈ R such
that for all x, 0 < |x− a| < δ implies |f(x)− L| < ϵ. (Also ϵ > 0, δ > 0.)

Here is what this says. Suppose limx→a f(x) = L. You pick any interval on the
y-axis around L. Make it as small (or as large) as you want. I’ll produce an
interval on the x-axis around a. You can take any number from my interval,
plug it into f , and the output will stay within the bounds you specified.

So ϵ specifies the distance away from L along the y-axis, and δ specifies the
distance away from a along the x-axis. Take any x within δ of a, plug it into f ,
and the result is guaranteed to be within ϵ of L. limx→a f(x) = L just means
there exists such δ for any ϵ.

Limit uniqueness

Suppose limx→a f(x) = L. It’s easy to assume L is the only limit around a, but
such a thing needs to be proved. We prove this here. More formally, suppose
limx→a f(x) = L and limx→a f(x) = M . We prove that L = M .

Suppose for contradiction L ̸= M . Assume without loss of generality L > M .
By limit definition, for all ϵ > 0 there exists a positive δ ∈ R such that 0 <
|x− a| < δ implies

• |f(x)− L| < ϵ =⇒ L− ϵ < f(x)

• |f(x)−M | < ϵ =⇒ f(x) < M + ϵ

for all x. Thus

L− ϵ < f(x) < M + ϵ

=⇒ L− ϵ < M + ϵ

=⇒ L−M < 2ϵ

The above is true for all ϵ. Now let’s narrow our attention and consider a
concrete ϵ = (L−M)/4, which we easily find leads to a contradiction2:

L−M < 2ϵ

=⇒ (L−M)/4 < ϵ/2 dividing both sides by 4

=⇒ ϵ < ϵ/2 recall we set ϵ = (L−M)/4

We have a contradiction, and so L = M as desired.

2note we assumed L > M , thus ϵ = (L−M)/4 > 0
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Half-Value Neighborhood Lemma

This lemma will come in handy later, so we may as well prove it now. Suppose
M ̸= 0 and limx→a g(x) = M . We show that there exists some δ such that
0 < |x− a| < δ implies |g(x)| ≥ |M |/2 for all x.

Intuitively, the lemma states the following: when a function g approaches a
nonzero limit M near a point, there exists an interval in which the values of g
are closer to M than to zero.

Proof. The claim that |g(x)| ≥ |M |/2 is equivalent to

g(x) ≤ −|M |/2 or g(x) ≥ |M |/2

There are two possibilities: either M > 0 or M < 0. Let’s consider each
possibility separately.

Case 1. Suppose M > 0. Then to show |g(x)| ≥ |M |/2 it is sufficient to show
either g(x) ≤ −M/2 or g(x) ≥ M/2. We will show g(x) ≥ M/2. Fix ϵ = M/2.
By limit definition there is some δ such that 0 < |x− a| < δ implies for all x

|g(x)−M | < M/2

=⇒ −M/2 < g(x)−M

=⇒ M/2 < g(x) add M to both sides

=⇒ g(x) > M/2 note ≥ is correct but not tight

Case 2. Suppose M < 0. We must show either g(x) ≤ M/2 or g(x) ≥ −M/2.
We will show g(x) ≤ M/2. Fix ϵ = −M/2. Then

|g(x)−M | < −M/2

=⇒ g(x)−M < −M/2

=⇒ g(x) < M/2 add M to both sides;

note ≤ is correct but not tight

QED.

2.2 Evaluation mechanics proofs

Armed with the formal definition, we can use it to rigorously prove the five the-
orems useful for evaluating limits (constants, identity, addition, multiplication,
reciprocal). Let’s do that now.

Constants

Let f(x) = c. We prove that limx→a f(x) = c for all a.

Let ϵ > 0 be given. Pick any positive δ. Then for all x such that 0 < |x−a| < δ,
|f(x)− c| = |c− c| = 0 < ϵ. QED.
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(Note that we can pick any positive δ > 0, e.g. 1, 10, 1
10 .)

Identity

Let f(x) = x. We prove that limx→a f(x) = a for all a.

Let ϵ > 0 be given. We need to find δ > 0 such that for all x in 0 < |x− a| < δ,
|f(x) − a| = |x − a| < ϵ. I.e. we need to find a δ such that |x − a| < δ implies
|x− a| < ϵ. This obviously works for any δ ≤ ϵ. QED.

(Note the many options for δ, e.g. δ = ϵ, δ = ϵ
2 , etc.)

Addition

Let f, g ∈ R → R. We prove that

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x)

Let Lf = limx→a f(x) and let Lg = limx→a g(x). Let ϵ > 0 be given. We must
show there exists δ > 0 such that for all x bounded by 0 < |x − a| < δ the
following inequality holds:

|(f + g)(x)− (Lf + Lg)| < ϵ

I.e. we’re trying to show limx→a(f+g)(x) equals to Lf+Lg, the sum of the other
two limits. Let’s convert the left side of this inequality into a more convenient
form:

|(f + g)(x)− (Lf + Lg)| = |f(x) + g(x)− (Lf + Lg)|
= |(f(x)− Lf ) + (g(x)− Lg)|
≤ |(f(x)− Lf )|+ |(g(x)− Lg)| by triangle inequality

By limit definition there exist positive δf , δg such that for all x

• 0 < |x− a| < δf implies |f(x)− Lf | < ϵ/2

• 0 < |x− a| < δg implies |g(x)− Lg| < ϵ/2

Recall that we can make ϵ as small as we like. Here we pick deltas for ϵ/2
because it’s convenient to make the equations work, as you will see in a second.
For all x bounded by 0 < |x− a| < min(δf , δg) we have

|(f(x)− Lf )| < ϵ/2 and |(g(x)− Lg)| < ϵ/2

Fix δ = min(δf , δg). Then for all x bounded by 0 < |x− a| < δ we have
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|(f + g)(x)− (Lf + Lg)| ≤ |(f(x)− Lf )|+ |(g(x)− Lg)|
< ϵ/2 + ϵ/2 = ϵ

as desired.

Multiplication

Let f, g ∈ R → R. We prove that

lim
x→a

(fg)(x) = lim
x→a

f(x) · lim
x→a

g(x)

Let Lf = limx→a f(x) and let Lg = limx→a g(x). Let ϵ > 0 be given. We must
show there exists δ > 0 such that for all x bounded by 0 < |x − a| < δ the
following inequality holds:

|(fg)(x)− (LfLg)| < ϵ

(i.e. we’re trying to show limx→a(fg)(x) equals to LfLg, the product of the
other two limits.) Let’s convert the left side of this inequality into a more
convenient form:

|(fg)(x)− (LfLg)| = |f(x)g(x)− LfLg|
= |f(x)g(x)− Lfg(x) + Lfg(x)− LfLg|
= |g(x)(f(x)− Lf ) + Lf (g(x)− Lg)|
≤ |g(x)(f(x)− Lf )|+ |Lf (g(x)− Lg)| by triangle inequality

= |g(x)||f(x)− Lf |+ |Lf ||g(x)− Lg| in general |ab| = |a||b|

We now need to show there exists δ such that 0 < |x− a| < δ implies

|g(x)||f(x)− Lf |+ |Lf ||g(x)− Lg| < ϵ

We will do that by finding δ such that

1. |g(x)||f(x)− Lf | < ϵ/2

2. |Lf ||g(x)− Lg| < ϵ/2

First, we show |g(x)||f(x)− Lf | < ϵ/2.

By limit definition we can find δ1 to make |f(x) − Lf | as small as we like.
But how small? To make |g(x)||f(x) − Lf | < ϵ/2 we must find a delta such
that |f(x) − Lf | < ϵ/2g(x). But to do that we need to get a bound on g(x).
Fortunately we know there exists δ2 such that |g(x)−Lg| < 1 (we pick 1 because
we must pick some bound, and 1 is as good as any). Thus |g(x)| < |Lg| + 1.
And so, we can pick δ1 such that |f(x)− Lf | < ϵ/2(|Lg|+ 1).
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Second, we show |Lf ||g(x)− Lg| < ϵ/2.

That is easy. By limit definition there exists a δ3 such that 0 < |x − a| < δ3
implies |g(x) − Lg| < ϵ/2|Lf | for all x. Actually, we need a δ3 such that 0 <
|x− a| < δ3 implies |g(x)−Lg| < ϵ

2(|Lf |+1) for all x to avoid divide by zero, and

of course that exists too.

Fix δ = min(δ1, δ2, δ3). Now

|(fg)(x)− (LfLg)| ≤ |g(x)||f(x)− Lf |+ |Lf ||g(x)− Lg|
< e/2 + e/2 = e

as desired.

Reciprocal

Let limx→a f(x) = L. We prove limx→a

(
1
f

)
(x) = 1/L when L ̸= 0.

First we show 1
f is defined near a. By half-value neighborhood lemma (see 2.1)

there exists δ1 such that 0 < |x − a| < δ1 implies |f(x)| ≥ |L|/2 where L ̸= 0.
Therefore f(x) ̸= 0 near a, and thus 1

f near a is defined.

Now all we must do is find a delta such that
∣∣∣ 1f (x)− 1

L

∣∣∣ < ϵ. Let’s make the

equation more convenient:

∣∣∣∣ 1f (x)− 1

L

∣∣∣∣ = ∣∣∣∣ 1

f(x)
− 1

L

∣∣∣∣
=

∣∣∣∣L− f(x)

Lf(x)

∣∣∣∣
=

|f(x)− L|
|L||f(x)|

=
|f(x)− L|

|L|
· 1

|f(x)|

Above we showed there exists δ1 such that 0 < |x−a| < δ1 implies |f(x)| ≥ |L|/2.
Raising both sides to −1 we get | 1

f(x) | ≤
2
|L| . Continuing the chain of reasoning

above we get

|f(x)− L|
|L|

· 1

|f(x)|
≤ |f(x)− L|

|L|
· 2

|L|

=
2

|L|2
|f(x)− L|
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(if you’re confused about why this inequality works, left-multiply both sides of

| 1
f(x) | ≤

2
|L| by

|f(x)−L|
|L| .) Thus we must find δ2 such that

2

|L|2
|f(x)− L| < ϵ

That is easy. Since limx→a f(x) = L we can make |f(x)−L| as small as we like.

Dividing both sides by 2
|L|2 , we must make |f(x) − L| < |L|2ϵ

2 . Thus we must

fix δ = min(δ1, δ2). QED.

2.3 Low-level proofs

While high level theorems allow us to easily compute complicated limits, it’s
instructive to compute a few limits for complicated functions straight from the
definition. We do that here.

Limits of quadratic functions

We will prove directly from the limits definition that limx→a x
2 = a2. Let ϵ > 0

be given. We must show there exists δ such that |x2 − a2| < ϵ for all x in
0 < |x− a| < δ.

Observe that
|x2 − a2| = |(x− a)(x+ a)| = |x− a||x+ a|

Thus we must pick δ such that |x− a||x+ a| < ϵ. Since 0 < |x− a| < δ, picking
δ conveniently happens to bound |x−a|, letting us make it as small as we want.
But to know how small, we need to find an upper bound on |x+ a|. We can do
it as follows.

Pick an arbitrary δ = 1 (we may pick any arbitrary delta, e.g. 1/10, 10, etc.)
Then since |x− a| < δ:

|x− a| < 1

=⇒ −1 < x− a < 1

=⇒ 2a− 1 < x+ a < 2a+ 1 add 2a to both sides

We now have a bound on x + a, but we need one on |x + a|. It’s easy to see
|x+ a| < max(|2a− 1|, |2a+ 1|). By triangle inequality (|a+ b| ≤ |a|+ |b|):

|2a− 1| ≤ |2a|+ | − 1| = |2a|+ 1

|2a+ 1| ≤ |2a|+ |1| = |2a|+ 1

Thus |x+ a| < |2a|+1, provided |x− a| < 1. Coming back to our original goal,
|x− a||x+ a| < ϵ when

• |x− a| < 1 and

• |x− a| < ϵ
|2a|+1

Putting these together, δ = min(1, ϵ
|2a|+1 ).
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Limits of fractions

We will prove directly from the limits definition that limx→2
3
x = 3

2 . Let ϵ > 0
be given. We must show there exists δ > 0 such that | 3x − 3

2 | < ϵ for all x in
0 < |x− 2| < δ.

Let’s manipulate | 3x − 3
2 | to make it more convenient:∣∣∣∣ 3x − 3

2

∣∣∣∣ = ∣∣∣∣6− 3x

2x

∣∣∣∣ = 3

2

|x− 2|
|x|

Thus we need to find δ such that

3

2

|x− 2|
|x|

< ϵ

=⇒ |x− 2|
|x|

<
2ϵ

3

Conveniently 0 < |x− 2| < δ bounds |x− 2|. But now we need to find a bound
for |x|. It would be extra convenient if we could show |x| > 1. Then we could
set δ = 2ϵ

3 (and thus bound |x− 2| < 2ϵ
3 ). A denominator greater than 1 would

only make the fraction smaller than 2ϵ
3 , ensuring

|x−2|
|x| < 2ϵ

3 holds.

We will do exactly that. Pick an arbitrary δ = 1 (we may pick any arbitrary
delta, e.g. 1/10, 10, etc.) Then since |x− 2| < δ

|x− 2| < 1

=⇒ −1 < x− 2 < 1

=⇒ 1 < x < 3

=⇒ 1 < |x| < 3

Yes!! Luckily δ = 1 implies |x| > 1! Thus, provided that |x − 2| < 1 and
|x − 2| < 2ϵ

3 , the inequality | 3x − 3
2 | < ϵ holds. Putting the two constraints

together, we get δ = min(1, 2ϵ
3 ).
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